PROBLEM SET 1-1
(Properties of Real Numbers)

To which set of numbers does each number belong?

1. 4
2. $\sqrt{6}$
3. π
4. -6

Graph each number on a number line. Graph all numbers on the same number line.
5. 0
6. $-\sqrt{24}$
7. -2
8. $2 \frac{1}{2}$
9. $-4 \frac{2}{3}$

Replace each \qquad with the symbol <, >, or = to make the sentence true.
10. -7 \qquad -9
11. 14 \qquad $\sqrt{14}$

Find the opposite and the reciprocal of each number.
12. 200
13. $3 \frac{3}{5}$
14. -0.01
15. $-\frac{7}{2}$

Name the property of real numbers illustrated by each equation.
16. $92.5(1)=92.5$
17. $\pi(a+b)=\pi a+\pi b$
18. $-7+4=4+(-7)$
19. $(2 \sqrt{10}) \cdot \sqrt{3}=2(\sqrt{10} \cdot \sqrt{3})$
20. $29 \pi=\pi \cdot 29$
21. $-\sqrt{5}+0=-\sqrt{5}$
22. $(-8)+[-(-8)]=0$
23. $\frac{4}{7} \cdot \frac{7}{4}=1$
24. $25(2 x+5 y)=50 x+125 y$

Simplify each expression.
25. |10.3|
26. $|-0.06|$
27. $-|-25|$
28. $\quad 0.2|-8|$
29. $\left|-\frac{1}{3}\right|$
30. $|7-10|$
31. $|10-7|$
32. $|5|-|-7|$

Use order of operations to simplify each expression.
33. $\frac{8+5 \cdot 2}{12}$
34. $(40+24) \div 8-\left(2^{2}-1\right)$
35. $40+24 \div 8-2^{2}-1$

Show that each statement is false by finding a counterexample (an example the makes the statement false):
36. The reciprocal of each whole number is a whole number.
37. The opposite of each natural number is a natural number.
38. There is no whole number that has an opposite that is a whole number.
39. There is no integer that has a reciprocal as an integer.
40. The product of two irrational numbers is an irrational number.

