PROBLEM SET 2-4

(Using Linear Models)

Use a graphing calculator to do the following:

1. The table below shows the average daily energy requirements for male children and adolescents:

Age (Years)	1	2	5	8	11	14	17
Energy Needed (Calories)	1100	1300	1800	2200	2500	2800	3000

- **a)** Graph the data and state the correlation.
- **b**) Model the data with a linear equation
- c) Estimate the daily requirement for a 16 year old male.
- **d**) Do you think your model also applies to adult males? Explain.
- **2.** The table below shows the relationship between Calories and fat in various fast-food hamburgers:

Hamburger	A	В	C	D	E	F	G	H	I
Calories	720	530	510	500	305	410	440	320	598
Fat (g)	46	30	27	26	13	20	25	13	26

- **a)** Graph the data and state the correlation
- **b**) Model the data with a linear equation
- c) How much fat would you expect a 330-Calorie hamburger to have?
- **d)** A student reports these estimates: 10 g of fat for a 200-Calorie hamburger and 36 g of fat for a 660-Calories hamburger. Which is estimate is *not* reasonable? Explain.

3. The table below shows population and licensed driver statistics from a recent year:

State	Alabama	Florida	Louisiana	S. Carolina	Virginia	W. Virginia
Population	4.3	14.7	4.4	3.8	6.7	1.8
(millions)						
Licensed						
Drivers	3.2	11.6	2.7	2.6	4.7	1.3
(millions)						

- a) What variable should be the independent variable?
- **b**) Graph the data and state the correlation.
- c) Model the data with a linear equation
- **d)** The population of Oregon was approximately 3 million that year. About how many licensed drivers lived in Oregon?
- e) Is the correlation between population and number of licensed drivers strong or weak? Explain.

4. The table below shows expenditures for national health care from 1992 through 1997:

Year	1992	1993	1994	1995	1996	1997
National Heath Care						
Expenditures (billions of	836.5	898.5	947.7	993.7	1042.5	1092.4
dollars)						

- **a)** Graph the data and state the correlation.
- **b**) Model the data with a linear equation
- **5.** The table below shows the population and number of representatives for a random sample of states:

State	AL	FL	IN	KY	LA	NC	OK	SC	TN	VA
Population (millions)	4.0	12.9	5.5	3.7	4.2	6.6	3.1	3.5	4.9	6.2
Representatives	7	23	10	6	7	12	6	6	9	11

- a) Graph the data and state the correlation.
- **b**) Model the data with a linear equation.