ALGEBRA II REVIEW PROBLEMS

(Chapter 6)

- 1. Write a polynomial described below in standard form:
 - A cubic trinomial a.

- b. A quadratic binomial
- Write a polynomial equation with rational coefficients in standard form given the following 2. zeros:
 - 5, $\sqrt{3}$ a.

- b. 4, 3 + i
- Divide $(x^3 5x^2 + 12)$ by (x 2) using long division 3.
- Divide $(x^4 x^3 + x^2 x + 1)$ by (x + 1) using synthetic division 4.
- Use synthetic division and the Remainder Theorem to find P(2) if $P(x) = x^4 3x^3 + 3x 4$ 5.
- If $2x^5 + x^4 + x^3 x^2 9x 42 = 0$, then answer the following: 6.
 - Use Descartes's Rule of Signs to determine the number of possible positive and negative a. real roots
 - b. List all possible rational roots
 - State the number of complex roots and possible number of real roots c.
- 7. Solve the following over the set of Complex numbers:
 - $x^3 64 = 0$ a.
- **b.** $x^3 6x^2 + 8x = 0$ **c.** $x^4 29x^2 = -100$

Find all zeros of $f(x) = x^3 + 2x^2 + 2x + 4$ 8.

ANSWERS

1a.
$$x^3 - 4x + 2$$
 (Answer may vary)

1b.
$$x^2 - 4$$
 (Answer may vary)

2a.
$$(x-5)(x-\sqrt{3})(x+\sqrt{3})=0$$

 $x^3-5x^2-3x+15=0$

2b.
$$(x-4)(x-(3+i))(x-(3-i)) = 0$$

 $x^3 - 10x^2 + 34x - 40 = \mathbf{0}$

3.
$$x^2 - 3x - 6$$
$$x - 2 x^3 - 5x^2 + 0x + 12$$

4.
$$-1$$
 1 -1 1 -1 1 -1 1 -1 2 -3 4 -1 1 -2 3 -4 5 -2 -2 -3 -4 -2 -3 -2 -2 -3 -2 -2 -3 -2 -2 -3 -2 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3 -2 -3

5.
$$2 1 -3 0 3 -4$$

$$2 -2 -4 -2$$

$$1 -1 -2 -1 -6$$

$$P(2) = -6$$

6a. 1 possible **positive** real root; 0, 2 or 4 possible **negative** real roots

6b.
$$\pm 1, \pm 2, \pm 3, \pm 6, \pm 7, \pm 14, \pm 21, \pm 42, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{7}{2}, \pm \frac{21}{2}$$

6c. 5 complex roots; 1, 3 or 5 real roots

7a.
$$x = 4, -2 \pm 2i\sqrt{3}$$

7b.
$$x = 0, 2, 4$$

7c.
$$x = 2, -2, 5, -5$$

8.
$$x = -2, \pm i\sqrt{2}$$