PROBLEM SET 6-5 AND 6-6

(Root Theorems; Fundamental Theorem of Algebra)

A polynomial equation with rational coefficients has the given roots. Find two additional roots.

1.
$$4-\sqrt{6}, \sqrt{3}$$

2.
$$1+i, -5i$$

3.
$$2+3i, 6i$$

4.
$$4-i, 2+\sqrt{2}$$

Find a polynomial equation with rational coefficients that has the given numbers as roots.

6.
$$4 + \sqrt{2}$$
 and -3

For each equation, state the number of complex roots, the possible number of real roots and the possible rational roots.

7.
$$x^3 + 4x^2 + 5x - 1 = 0$$

8.
$$x^7 - x^3 - 2x - 3 = 0$$

9.
$$x^{10} + x^8 - x^4 + 3x^2 - x + 1 = 0$$

9.
$$x^{10} + x^8 - x^4 + 3x^2 - x + 1 = 0$$
 10. $2x^4 - x^3 + 2x^2 + 5x - 26 = 0$

Find the roots/zeros of the following.

11.
$$x^3 - 5x^2 + 7x - 35 = 0$$

12.
$$g(x) = x^3 - 5x^2 + 5x - 4$$

13.
$$y = x^3 - 4x^2 + 9x - 36$$

14.
$$y = 2x^3 + 14x^2 + 13x + 6$$

15.
$$2x^4 - 5x^3 - 17x^2 + 41x - 21 = 0$$

16.
$$x^4 - 6x^2 + 8 = 0$$