PROBLEM SET 6-5

(Root Theorems)

Use the Rational Root Theorem to list all possible rational roots for each polynomial equation. Then find any actual rational roots.

1.
$$x^3 - x^2 + 2x - 2 = 0$$

2.
$$x^3 + x^2 + 4x + 4 = 0$$

3.
$$x^3 + 2x^2 - 8x - 16 = 0$$

4.
$$12x^3 - 32x^2 + 25x - 6 = 0$$

Find the roots of each equation.

$$5. x^3 - 5x^2 + 7x - 35 = 0$$

6.
$$2x^4 - 5x^3 - 17x^2 + 41x - 21 = 0$$

7.
$$4x^4 - 37x^2 + 9 = 0$$

8.
$$9x^4 + 3x^3 - 30x^2 + 6x + 12 = 0$$

A polynomial equation with rational coefficients has the given roots. Find two additional roots.

9.
$$4-\sqrt{6}, \sqrt{3}$$

10.
$$1+i, -5i$$

11.
$$2 + 3i, 6i$$

12.
$$4-i$$
, $2+\sqrt{2}$

Find a polynomial equation with rational coefficients that has the given numbers as roots.

14.
$$3 + i$$
 and -3

15.
$$3 + i$$
 and $-2i$

16.
$$\sqrt{3}$$
 and $1 - i$