GRAPHING RATIONAL FUNCTIONS

$$f(x) = \frac{P(x)}{Q(x)}$$

- 1. Determine vertical asymptotes and points of discontinuity (if any) using each real zero of the denominator Q(x)
 - **b.** Graph and label
- **2.** Determine horizontal asymptote (if any) using degrees of the numerator P(x) and denominator Q(x):

I. Degree of
$$P(x)$$
 < Degree of $Q(x)$

$$y = 0$$

II. Degree of
$$P(x) >$$
Degree of $Q(x)$

III. Degree of
$$P(x)$$
 = Degree of $Q(x)$

$$y = \frac{a}{b}$$

- **b.** Graph and label
- **3.** Calculate *y*-values near vertical asymptotes
 - **b.** Finish graphing

$$y = \frac{x+3}{x^2 - 6x + 5}$$

2. Horizontal asymptote:

$$y = \frac{x+3}{x^2 - 6x + 5}$$

$$y = \frac{4x - 1}{x + 2}$$

2. Horizontal asymptote:

$$y = \frac{4x - 1}{x + 2}$$

$$y = \frac{x^2 + 2x}{x + 2}$$

2. Horizontal asymptote:

y = x

$$y = \frac{x-2}{x^2 + x - 6}$$

2. Horizontal asymptote:

$$y = \frac{1}{x+3}$$

