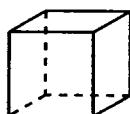


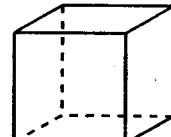
Practice 10-8**Areas and Volumes of Similar Solids**

The figures in each pair are similar. Use the given information to find the similarity ratio of the smaller figure to the larger figure.

1.

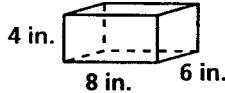
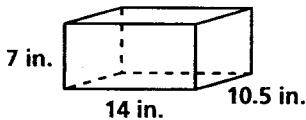


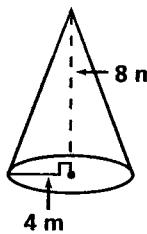
$$\text{S.A.} = 49 \text{ cm}^2$$



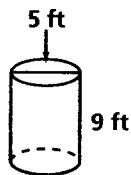
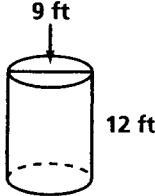
$$\text{S.A.} = 81 \text{ cm}^2$$

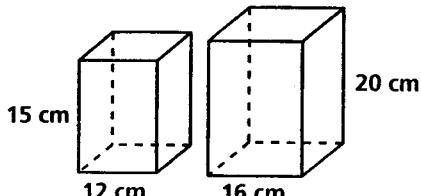
2.



$$V = 125 \text{ in.}^3$$


$$V = 512 \text{ in.}^3$$

Are the two solids in each pair similar? If so, give the similarity ratio. If not, write *not similar*.



3.


4.

5.

6.

The surface areas of two similar figures are given. The volume of the larger figure is given. Find the volume of the smaller figure.

7. S.A. = 25 cm^2

S.A. = 36 cm^2

V = 216 cm^3

8. S.A. = 16 in.^2

S.A. = 25 in.^2

V = 500 in.^3

9. S.A. = 72 ft^2

S.A. = 98 ft^2

V = 686 ft^3

The volumes of two similar figures are given. The surface area of the smaller figure is given. Find the surface area of the larger figure.

10. V = 8 ft^3

V = 125 ft^3

S.A. = 4 ft^2

11. V = 40 m^3

V = 135 m^3

S.A. = 40 m^2

12. V = 125 cm^3

V = 1000 cm^3

S.A. = 150 cm^2

13. A cone-shaped pile of sand weighs 250 lb. How much does a similarly shaped pile of sand weigh if each dimension is six times as large?

14. A block of ice weighs 2 lb. How much does a similarly shaped block of ice weigh if each dimension is twice as large?