ANOVA F TEST

ANOVA (Analysis of Variance) is a statistical technique for comparing several means and is used to determine if the differences between means is statistically significant.

To determine which colors best attract insects, experimenters randomly placed 6 sticky boards of each of 4 colors in a field of oats and measured the number of beetles trapped:

BOARD COLOR	INSECTS TRAPPED					
Blue	16	11	20	21	14	7
Green	37	32	20	29	37	32
White	21	12	14	17	13	20
Yellow	45	59	48	46	38	47

1. PUT DATA INTO SEPARATE LISTS; CHECK/REMOVE ANY OUTLIERS.

Only the number of insects trapped on yellow boards appear to have any outliers (38 and 59)... removed from list

NOTE: This makes the sample size for yellow boards very small (n = 3)

2. PERFORM 1-VARIABLE STATS:

COLOR	MEAN (x-bar)	STANDARD DEVIATION (s)
Blue (L ₁)	14.83	5.345
Green (L ₂)	31.17	6.306
White (L ₃)	16.17	3.764
Yellow (L ₄)	46.5	1.291

3. CHECK THAT ANOVA CAN BE SAFELY USED (TO COMPARE MEANS):

- a) Independent SRSs from each population... unknown and may be a concern
- b) Population has normal distribution or $n \ge 40$ (Central Limit Theorem) or normal probability plot is relatively linear after removing outliers (n < 40)... npps appear relatively linear

c) All standard deviations are the *same* $[s_{largest} \le 2(s_{smallest})]$

$$\frac{l \operatorname{arg} est}{smallest} = \frac{6.306}{2.291} = 4.88 > 2 \dots \text{ though ANOVA is robust, the results may be invalid}$$

4. STATE HYPOTHESES:

 μ_1 = mean number of insects trapped by blue boards

 μ_3 = mean number of insects trapped by white boards

 μ_2 = mean number of insects trapped by green boards μ_4 = mean number of insects trapped by yellow boards

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = \mu_4$

 H_a : μ_1 , μ_2 , μ_3 , μ_4 are not all equal

5. PERFORM TEST (TI-84/89 CAN ONLY BE USED FOR COMPARING \leq 6 MEANS):

a. USING CALCULATOR:

STAT
$$\longrightarrow$$
 TESTS \longrightarrow F:ANOVA (L₁, L₂, L₃, L₄) \longrightarrow ENTER:
F Statistic = 45.439, *P*-value = 1.33 x $10^{-8} < .001$

b. USING TABLE D:

Where degrees of freedom in the numerator = 3 and degrees of freedom in the denominator = 18:

$$I = \#$$
 groups = 4 $N = \#$ observations = 22 (after removing outliers)

numerator df =
$$I - 1 = 4 - 1 = 3$$
 denominator df = $N - I = 22 - 4 = 18$

P-value < .001

6. STATE CONCLUSION

Despite the (very) small samples, the experiment provides strong evidence (p < .001) of differences among the colors. Yellow boards appear to be the best at attracting beetles.