ONE SAMPLE Z-TEST

This test is used to compare a sample mean (\bar{x}) to a population mean (μ) or to determine a confidence interval for a population mean when σ is known

The cellulose content of a variety of alfalfa hay is normally distributed with $\sigma = 8 \text{mg/g}$. An agronomist believes the cellulose content is higher than 140 mg.

Test this claim at the $\alpha = .05$ significance level.

To test the claim, an SRS of 15 cuttings is taken with an average cellulose content is 145 mg/g.

P) STATE POPULATION PARAMETER:

 μ = mean cellulose content of a variety of alfalfa hay

H) STATE HYPOTHESES:

$$H_0: \mu = 140$$
 $H_a: \mu > 140$

A) VERIFY CONDITIONS REQUIRED FOR TEST:

a) SRS

The problem states an SRS was used...

Sampling distribution normal- normal population or large sample size (n > 40) or justification for normality (n < 40) after omitting outliers

Since the population distribution is normal, the sampling distribution is normal

c) N > 10n

$$N > 10n > 10(15) > 150$$
?

T) PUT DATA INTO LIST (IF NECESSARY) AND

a) USE TABLE C:

i) Determine mean (\bar{x})

$$\bar{x} = 145$$

ii) Calculate z statistic

$$z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = 2.42$$

iii) Determine critical z* and compare to z statistic

From Table C (α = .05), the critical z* value is 1.645. Since 2.42 > 1.645, the P-value < .05.

b) USE CALCULATOR

DISTR ---> 1:normalcdf (min, max) =
$$(2.42, 10) = .0078$$

S) STATE CONCLUSION:

At $\alpha = .05$ significance level, we reject the null hypothesis and conclude that the mean cellulose content of this variety of alfalfa hay is greater than 140 mg/g.

CONFIDENCE INTERVAL (Use PAIS):

A 90% confidence interval for the mean cellulose content of this variety of alfalfa hay is:

We are 90% confident that the average cellulose content of this type of alfalfa hay is between 141.6 mg/g and 148.4 mg/g.