2-SAMPLE T TEST

This test is used to compare 2 means from 2 separate (independent) samples.

To compare the strength of Bounty paper towels to generic paper towels, 30 of each were randomly selected. Each paper was uniformly soaked with 4 ounces of water and while holding opposite edges of the towel, the number of quarters each paper towel could hold before ripping was counted. Here are the results:

Bounty	125	116	117	114	103 118 127	126	120	115		120 121	126 113
Generic	77		89 79		88	86	100	90	81	84 90	84
	96 85	83	79 89	90 84	86 90	88 100	81 94	91 87	94	90	89

Determine if Bounty paper towels are stronger than the generic brand at the α = .01 level.

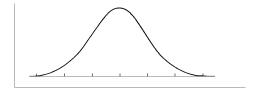
P) STATE POPULATION PARAMETERS:

H) STATE HYPOTHESES:

A) VERIFY CONDITIONS REQUIRED FOR TEST:

- a) Random
- b) Normal sampling distribution

c) Independent


T) PERFORM TEST USING:

- a) T Distribution Table:
 - *i*) Put data into lists and calculate x-bars/standard deviations (if necessary)

ii) Calculate t-statistic:

$$t = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} =$$

- iii) Determine degrees of freedom:
- *iv*) Locate critical *t*-value and estimate *P*-value

h)	CALCULATOR
b)	CALCULATUR

S) STATE CONCLUSION IN CONTEXT:

CONFIDENCE INTERVAL:

Calculate a 99% confidence interval for the mean difference in the number of quarters that a wet Bounty paper towel can hold compared to a wet generic paper towel.

- **P**) See above
- A) See above
- I) Construct Interval:
 - a) Using Formula

$$CI = (\overline{x}_B - \overline{x}_G) \pm t * \sqrt{\frac{(s_B)^2}{n_B} + \frac{(s_G)^2}{n_G}}$$

b) Using Calculator

S) State Conclusion (Use less or more)