2-SAMPLE T TEST

This test is used to compare 2 means from 2 separate (independent) samples.

To compare the strength of Bounty paper towels to generic paper towels, 30 of each were randomly selected. Each paper was uniformly soaked with 4 ounces of water and while holding opposite edges of the towel, the number of quarters each paper towel could hold before ripping was counted. Here are the results:

Bounty	106 125 111		117	114	103 118 127	126		115	116 116	120 121	126 113
Generic	77 96 85	103 87 83	89 79 89	79 90 84	88 86 90	86 88 100	100 81 94	90 91 87	81 94	84 90	84 89

Determine if Bounty paper towels are stronger than the generic brand at the $\alpha = .01$ level.

P) STATE POPULATION PARAMETERS:

 μ_B = the mean number of quarters a wet Bounty paper can hold

 μ_G = the mean number of quarters a wet generic paper towel can hold

H) STATE HYPOTHESES:

$$H_0: \mu_B = \mu_G$$
 $H_a: \mu_B > \mu_G$

A) VERIFY CONDITIONS REQUIRED FOR TEST:

a) Random

Random samples were taken

b) Normal sampling distribution

Since $n_B \ge 30$ and $n_G \ge 30$, the Central Limit Theorem applies

c) Independent

The samples were independently taken and:

 $N_B > 10(30) > 300$ sheets of Bounty paper towels \checkmark

 $N_G > 10(30) > 300$ sheets of generic paper towels \checkmark

T) PERFORM TEST USING:

- a) T Distribution Table:
 - *i*) Put data into lists and calculate x-bars/standard deviations (if necessary)

$$\bar{x}_B = 117.6$$

$$s_B = 6.64$$

$$\bar{x}_G = 88.1$$

$$s_G = 6.30$$

ii) Calculate t-statistic:

$$t = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{117.6 - 88.1}{\sqrt{\frac{6.64^2}{30} + \frac{6.30^2}{30}}} = 17.64$$

iii) Determine degrees of freedom:

Using smaller of n_B or n_G ; df = 30 - 1 = 29

iv) Locate critical *t*-value and estimate *P*-value



From Table (df = 29 and α = .01), the critical t value is 2.539

Since 17.64 > 2.539, the *P*-value < .01.

b) CALCULATOR:

STAT
$$\longrightarrow$$
 TESTS \longrightarrow 2-Samp T Test \longrightarrow P-value = 2.98 x $10^{-25} = 0$
DISTR \longrightarrow $tcdf$ (min, max, df) = (17.64, 100, 29) = 2.39 x $10^{-17} = 0$

S) STATE CONCLUSION IN CONTEXT:

There is very convincing evidence (P-value < .01) to reject H_0 and conclude that that wet Bounty paper towels can hold more weight, on average, than wet generic paper towels.

CONFIDENCE INTERVAL:

Calculate a 99% confidence interval for the mean difference in the number of quarters that a wet Bounty paper towel can hold compared to a wet generic paper towel.

- P) See above
- A) See above
- I) Construct Interval:
 - a) Using Formula

$$CI = (\overline{x}_B - \overline{x}_G) \pm t * \sqrt{\frac{(s_B)^2}{n_B} + \frac{(s_G)^2}{n_G}}$$

$$CI = (117.6 - 88.1) \pm 2.861 \sqrt{\frac{(6.64)^2}{30} + \frac{(6.30)^2}{30}}$$

$$CI = (24.7, 34.3)$$

b) Using Calculator

STAT
$$\longrightarrow$$
 TESTS \longrightarrow 2-Samp T Int = (25.0, 33.9)

S) State Conclusion (Use *less* or *more*)

We are 99% confident that wet Bounty paper towels hold between 25 and 34 more quarters than wet generic paper towels.