CONFIDENCE INTERVALS

This test is used to calculate to a confidence interval for a population mean when σ is known.

The distribution of the systolic blood pressure of adult males is approximately normal with $\sigma = 9.3$ mmHg. Systolic readings are taken from a SRS of 27 adult males where $\bar{x} = 114.9$ mmHg.

Construct a 99% confidence interval for the mean systolic blood pressure of all adult males.

P) IDENTIFY POPULATION PARAMETER:

 μ = mean systolic blood pressure of all adult males

A) VERIFY CONDITIONS REQUIRED FOR TEST:

- a) SRS
- b) Normal distribution
- c) N > 10n > 10(27) > 270

I) CONSTRUCT INTERVAL USING:

- a) TABLE C:
 - i) Put data into list and calculate sample mean:

$$\bar{x} = 114.9$$

ii) Determine z* from Table C and calculate interval:

$$\mu = \bar{x} \pm z \left(\frac{\sigma}{\sqrt{n}} \right) = (110.3, 119.5)$$

b) **CALCULATOR:**

S) STATE CONCLUSION:

Based on our method, we are 99% confident that the interval from 110.3 mmHg and 119.5 mmHg will *capture* the mean blood systolic blood pressure of all adult males.

NOTE: Do <u>not</u> say "the probability is 99% that the mean blood pressure lies between 110.3 and 119.5". Either the mean does or does not lie within this interval!