CHI SQUARE TEST OF ASSOCIATION/INDEPENDENCE

This test is used to determine whether there is a significant association between 2 categorical variables from the **same sample**.

To determine of there was a relationship between smoking status and socioeconomic levels, researchers categorized 356 male employees:

ACTUAL COUNTS	Socioeconomic Level		
	High	Middle	Low
Current Smoker	51	22	43
Former Smoker	92	21	28
Never Smoked	68	9	22

DETERMINE EXPECTED COUNTS:

Expected Count = (Row Total)(Column Total)/ Sample Size

EXPECTED COUNTS	Socioeconomic Level		
	High	Middle	Low
Current Smoker	68.75	16.94	30.30
Former Smoker	83.57	20.60	36.83
Never Smoked	58.68	14.46	25.86

H STATE NULL AND ALTERNATIVE HYPOTHESES

H_o: There is no association between smoking status and SES in the population of federal male employees

H_a: There is an association between smoking status and SES in the population of federal male employees

A DETERMINE THAT CONDITIONS FOR TEST ARE ACCEPTABLE:

- SRS.. unknown but the sample was random
- Counts (not percents)... yes
- Every expected count ≥ 1 and $80\% \geq 5...$ yes

FORMULA/TABLE E:

- a) Chi-Square Statistic: $X^2 = \Sigma (O_i E_i)^2 / E_i$ = $(51 - 68.75)^2 / 68.75 + (22 - 16.94)^2 / 16.94 + ... + (22 - 25.86)^2 / 25.86$ = 18.51
- b) Degrees of Freedom = (r-1)(c-1) = (3-1)(3-1) = 4Number of rows Number of columns in table in table
- c) P-Value
 - i) Table E: Any X^2 statistic > 18.51 (df = 4) has P-value < .001
 - ii) Calculator: DISTR $\rightarrow 7:X^2 \text{ cdf } (18.51, 100, 4) \rightarrow p = .00098$

CALCULATOR:

a) Store observed counts in a [R,C] matrix:

MATRIX
$$\rightarrow$$
 EDIT \rightarrow 1: [A] \rightarrow 3 X 3 \rightarrow Enter Counts \rightarrow QUIT

b) Perform X^2 Test:

STAT
$$\rightarrow$$
 TESTS \rightarrow C: $X^2 - Test \rightarrow X^2 = 18.51$, P-value = .0098

NOTE:

If MATRIX [A] = Observed Counts, MATRIX [B] = Expected Counts

S STATE CONCLUSION IN CONTEXT:

There is very strong evidence (p < .001) to reject H_o and conclude an association exists between smoking status and SES in the population of federal male employees... to determine direction and nature of associations, use 2-way table techniques.