USING AN LSRL AS A LINEAR MODEL

(Sec 3.3)

1. The table below shows the average daily energy requirements for male children and adolescents:

Age (Years)	1	2	5	8	11	14	17
Energy Needed (Calories)	1100	1300	1800	2200	2500	2800	3000

- a) Graph the data and state the correlation.
- **b)** Model the data with a linear equation
- **c**) Estimate the daily requirement for a 16 year old male.
- **d)** Do you think your model also applies to adult males? Explain.

2. The table below shows the relationship between Calories and fat in various fast-food hamburgers:

Hamburger	A	В	C	D	Е	F	G	Н	I
Calories	720	530	510	500	305	410	440	320	598
Fat (g)	46	30	27	26	13	20	25	13	26

- a) Graph the data and state the correlation
- **b**) Model the data with a linear equation
- c) How much fat would you expect a 330-Calorie hamburger to have?
- d) A student reports these estimates: 10 g of fat for a 200-Calorie hamburger and 36 g of fat for a 660-Calories hamburger. Which is estimate is *not* reasonable? Explain.

3. The table below shows population and licensed driver statistics from a recent year:

State	Alabama	Florida	Louisiana	S. Carolina	Virginia	W. Virginia
Population	4.3	14.7	4.4	3.8	6.7	1.8
(millions)						
Licensed						
Drivers	3.2	11.6	2.7	2.6	4.7	1.3
(millions)						

- a) What variable should be the independent variable?
- **b**) Graph the data and state the correlation.
- c) Model the data with a linear equation
- **d**) The population of Oregon was approximately 3 million that year. About how many licensed drivers lived in Oregon?
- e) Is the correlation between population and number of licensed drivers strong or weak? Explain.

4. The table below shows expenditures for national health care from 1992 through 1997:

Year	1997	1998	1999	2000	2001	2002
National Heath Care						
Expenditures (billions of	1,142.6	1,209.0	1,286.6	1,377.2	1,494.1	1,636.4
dollars)						

- a) Graph the data and state the correlation.
- **b**) Model the data with a linear equation
- **c**) Based on your model, predict how much money was spent on health care in 2010.

DAILY ENERGY REQUIREMENTS FOR MALES (r = .99)

- **b**) Energy Needed = 1110.68 + 119.40(Age)
- **c**) 3021.09 calories
- **d**) No- adults need fewer calories (not more)

FAST FOOD HAMBURGERS

(r = .95)

- **b)** Fat Grams = -9.2682 + .0714(Calories) -9.2682
- **c**) 14.30 grams
- d) 200 calorie burger ---> 5.01 fat grams ---> 10 fat grams **not** reasonable 660 calorie burger ---> 37.86 fat grams ---> 36 fat grams reasonable

3a) Population (use to predict licensed drivers)

b)

- c) Licensed Drivers = -.4842 + .8125(Population)
- **d**) 1.95 million
- e) Strong correlation (99.7)... all points fall close to a straight line

4a) r = .9896

b) Health Expenditures = -19373.71 + 97.57(Year)

† 1997, 1998...

Health Expenditures = -8350.42 + 97.57(Year)

↑ 97, 98...

Health Expenditures = 430.75 + 97.57(Year)

↑ 7, 8...

c) \$2382.12 Billion (Actual was \$2593.6 Billion)