Mathematics 100 6 November 2006

The Distribution of the Sample Mean \overline{X} In Simple Random Sampling : An Example of Sampling Distributions

Let us reconsider the population of size N = 6 from the second lesson, which is as follows:

2 6 8 10 10 12

Since we know the *entire* population [starting soon, that will not be the case again], we can find the values of the parameters μ and σ , which are $\mu = 48/6 = 8$ and $\sigma = \sqrt{\frac{64}{6}} = 3.27$.

Let us first consider simple random samples (SRS) of size n = 2. We again list them below, along with their means (\bar{x}), the *estimates* of μ :

<u>Sample</u>	\overline{X}
2, 6	4
2, 8	5
2, 10	6
2, 10	6
2, 12	7
6, 8	7
6, 10	8
6, 10	8
6, 12	9
8, 10	9
8, 10	9
8, 12	10
10, 10	10
10, 12	11
10, 12	11

Thus, we have the following sampling distribution:

Distribution of \overline{X} for $n = 2$				
$\overline{\underline{X}}$	<u>Frq</u>			
4	1			
5	1			
6	2			
7	2			
8	2			
9	3			
10	2			
11	2			

The mean of this distribution, $\mu_{\overline{x}}$, is

$$\mu_{\bar{x}} = \frac{(1)(4) + (1)(5) + (2)(6) + \dots + (2)(11)}{15} = \frac{120}{15} = 8 = \mu$$

illustrating that the mean value [or expected value, $E(\bar{x})$] of the sampling distribution is the population mean, that is,

$$\mu_{\bar{x}} = \mu$$

The variance of the distribution, $\sigma_{\bar{x}}^2$, called the *sampling variance*, is

Var
$$(\bar{x}) = \sigma_{\bar{x}}^2 = \frac{1(4-8)^2 + 1(5-8)^2 + 2(6-8)^2 + \dots + 2(11-8)^2}{15} = \frac{64}{15}$$

and so $\sigma_{\bar{x}}$, called the *standard error* of the mean, is

$$\sigma_{\overline{x}} = \sqrt{\frac{64}{15}} \doteq 2.07$$

Let us now use this sampling distribution to confirm that

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}$$

by substituting in the values. We have

$$\sqrt{\frac{64}{15}} \stackrel{?}{=} \frac{\sqrt{\frac{64}{6}}}{\sqrt{2}} \sqrt{\frac{6-2}{6-1}}$$

$$= \sqrt{\frac{64}{12}} \sqrt{\frac{4}{5}}$$

$$= \sqrt{\frac{64}{15}}$$

which verifies the result.

Since N = 6 for our population, there are six possible sampling distributions: for n = 1 (which is just the population distribution), for n = 2 (which we have discussed), and for n = 3, 4, 5, and 6. All six are given below.

Sampling Distributions of \overline{X}

<u>For <i>n</i> = 1</u> :	$\frac{\bar{x}}{2}$ 6 8 10 12	frq 1 1 1 2 1	For $n = 2$:	$ \frac{\overline{x}}{4} $ 5 6 7 8 9 10 11	frq 1 1 2 2 2 2 3 2 2	For $n = 3$:		frq 1 2 3 2 4 2 3 2 1
For $n = 4$:	$\frac{\overline{x}}{6.5}$ 7 7.5 8 8.5 9 9.5	frq 2 2 3 2 2 2 1	For $n = 5$:	$\frac{\bar{x}}{7.2}$ 7.6 8.0 8.4 9.2	<u>frq</u> 1 2 1 1 1	$\underline{\text{For } n = 6}$:	$\frac{\overline{x}}{8}$	frq 1

Notice the increasing precision as n increases. For example, as we go from the sampling distribution for n = 2 to n = 3, the range of possible values for the statistic decreases from 11 - 4 = 7 to 10.6 - 5.3 = 5.3. Another way of saying this is that the sampling variance drops from 64/15 to 64/30, or the standard error of the mean drops from their square roots, from about 2.07 to 1.46. A complete summary is given below.

n	1	2	3	4	5	6
$\mu_{\overline{x}}$	8	8	8	8	8	8
$\sigma_{ar{ extit{x}}}$	3.27	2.07	1.46	1.03	0.65	0
range	10	7	5.3	3.5	2	0