AP EXAM FORMULAS

(Chapters 1-7)

DESCRIPTIVE STATISTICS			
Formula	Description	Calculator	
$\overline{x} = \frac{\sum x_i}{n}$	Mean	- 1-Var Stats	
$s_x = \sqrt{\frac{1}{n-1} \sum (x_i - \overline{x})^2}$	Standard Deviation		
$\hat{y} = b_0 + b_1 x$	LSRL		
$b_1 = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x - x_i)^2}$	Slope of LSRL		
$b_0 = \overline{y} - b_1 \overline{x}$	y-intercept of LSRL	LinReg (a + bx)	
$r = \frac{1}{n-1} \sum \left(\frac{x_i - \overline{x}}{s_x} \right) \left(\frac{y_i - \overline{y}}{s_y} \right)$	Correlation		
$b_1 = r \frac{s_y}{s_x}$	Slope of LSRL		

PROBABILITY				
Formula	Description	Calculator		
$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	Addition Rule			
$P(A B) = \frac{P(A \cap B)}{P(B)}$	Conditional Probability			
$E(X) = \mu_x = \sum x_i p_i$	Mean of a Random Variable			
$\operatorname{Var}(X) = \sigma_x^2 = \sum (x_i - \mu_x)^2 p_i$	Variance of a Random Variable			
If X has a Binomial distribution with parameters n and p , then:				
$P(X = k) = \binom{n}{k} p^{k} (1 - p)^{n-k}$	Binomial Probability $\binom{n}{k} = \frac{n!}{k!(n-k)!}$	binompdf (n, p, k) binomcdf if $X < k$		
$\mu_x = np$	Mean (Expected Value) of Random Variable X			
$\sigma_x = \sqrt{np(1-p)}$	Standard Deviation of Random Variable X			
$\mu_{\hat{p}} = p$	Mean of a Sample Proportion			
$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$	Standard Deviation of a Sample Proportion			
If \overline{x} is the mean of a random sample size n from an infinite population with mean μ and standard deviation σ , then:				
$\mu_{\bar{x}} = \mu$	Mean of a Sample Mean			
$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$	Standard Deviation of a Sample Mean			